Rechnen mit Potenzen

1. Potenzbegriff:

- a^b a Basis (Grundzahl) gibt an, welche Zahl mit sich selbst multipliziert wird
 - b Exponent (Hochzahl) gibt an, wie viel mal die Basis mit sich selbst multipliziert wird

2. Multiplikation von Potenzen

Beispiele

a) gleiche Basis

$$a^m \cdot a^n = a^{m+n}$$
 $2^3 \cdot 2^2 = 2^{3+2} = 2^5$
Basis beibehalten, Exponenten addieren $x^4 \cdot x^3 = x^{4+3} = x^7$

b) gleicher Exponent

$$a^m \cdot b^m = (a \cdot b)^m$$
 $2^2 \cdot 5^2 = (2 \cdot 5)^2 = 10^2$ Exponent beibehalten, Basis multiplizieren $x^5 \cdot y^5 = (x \cdot y)^5$

3. Division von Potenzen

a) gleiche Basis

$$a^m: a^n = a^n/a^m = a^{m-n}$$
 $3^4: 3^2 = 3^4/3^2 = 3^{4-2} = 3^2$ Basis beibehalten, Exponenten subtrahieren $x^6: x^3 = x^6/x^3 = x^{6-3} = x^3$

b) gleiche Exponenten

$$a^m:b^m=(a/b)^m$$
 $8^2:4^2=(8/4)^2=2^2$ Basen dividieren, Exponent beibehalten $x^2:y^2=(x/y)^2$

4. Potenzieren

$$(a^m)^m = a^m \cdot {}^m$$
 $(5^2)^3 = 5^2 \cdot {}^3 = 5^6$
Basis beibehalten, Exponenten multiplizieren $(x^3)^4 = x^3 \cdot {}^4 = x^{12}$

Merke:
$$a^{-n} = \frac{1}{a^n}$$
 $2^{-3} = \frac{1}{2^3}$ $x^{-5} = \frac{1}{x^5}$ $a^1 = a$ $a^0 = 1$